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By considering inertial effects in a field-dependent relaxational model, we show that noise may induce
collective oscillatory dynamics. In agreement with the recently introduced idea of noise-induced multistability,
we show that there is a region in parameter space where such behavior depends on the initial condition.
Moreover, when the coupling term leads to pattern formation by means of a morphological instability a la
Swift-Hohenberg, �J. Buceta, M. Ibañes, J. M. Sancho, and K. Lindenberg, Phys. Rev. E 67, 021113 �2003�
and K. Wood, J. Buceta, and K. Lindenberg, Phys. Rev. E 73, 022101 �2006�� our numerical simulations reveal
that spatio-temporal oscillatory structures develop.
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Field-dependent relaxational dynamics has been a subject
of considerable recent interest �1–6�. These models provide a
mechanism for noise-induced phase transitions that does not
require a Stratonovich drift �7,8�. In certain noise intensity
regimes these systems may exhibit noise-induced multista-
bility phenomena and the associated hysteresis, such that the
system can settle into an ordered or a disordered state de-
pending on the initial condition �9,10�. A comprehensive
study has revealed that the occurrence of these features de-
pends only on the balance of convexities between the relax-
ational parameter and the local potential of the model, and
not on the particular form of these functionals �9,10�.

Phase transitions induced purely by noise were first noted
in extended systems where the transition is induced dynami-
cally in the sense that it arises from a short-time instability of
the local dynamics which becomes globally stabilized at
longer times by the spatial coupling �2,6�. More recently,
noise-induced phase transitions have been found in relax-
ational systems in which it is possible to obtain a steady-state
probability distribution that leads to a nonequilibrium free
energy �4,6–10�. Transitions to globally ordered states in
such relaxational systems involve nearest neighbor coupling,
which in a continuum version translates to diffusive cou-
pling. A modification of the coupling to include more distant
neighbors, e.g., one that in a continuum version is repre-
sented by a Swift-Hohenberg coupling, extends the noise-
induced phenomena to pattern formation �8,10�.

Typically, these transitions between disordered and or-
dered or patterned states have been studied in systems de-
scribed by a single field. The case of two coupled fields has
been explored recently �11�, with the conclusion that macro-
scopic limit cycles can also be induced via pure noise-
induced phase transitions. These studies specifically focused
on dynamically induced phase transitions and therefore de-
pend on the Stratonovich drift, i.e., on the interpretation of
the noise. In parallel with that idea, herein we consider such
behavior in systems where the interpretation of the noise is
irrelevant to the occurrence of the phenomenon. Thus, we
consider the role of an additional field in a relaxational dy-
namics with field-dependent coefficients. The additional field

leads to noise-induced collective oscillatory behavior, includ-
ing oscillatory spatio-temporal structures.

Consider the Langevin equation defined on a lattice

�̇i = − ����
�F�����

��i
+ ����i��1/2�i�t� , �1�

where �i is a scalar field at site i, ���i� is the field-dependent
kinetic coefficient, F����� is an energy functional, and �i�t�
is a spatio-temporal white noise with zero mean and intensity
�2, ��i�t�� j�t���=�2�ij��t− t��. The interpretation of the noise
in this model at most affects quantitative results such as the
values of critical parameters but does not affect the occur-
rence of the phenomena themselves. For convenience, we
choose the Itô interpretation.

Equation �1� is the most general description possible for
the relaxational dynamics of a scalar field in which a gener-
alized fluctuation-dissipation relation holds. The Lyapunov
functional F drives the evolution and contains energy con-
tributions from a local potential and an interaction term �sur-
face tension�. Here we focus on a harmonic local potential,
and first we consider nearest neighbor interactions. Thus F
reads

F����� = 	
i

�i

2

2
+

K

4d
	
�ij�

�� j − �i�2� , �2�

where d is the spatial dimension and K the coupling strength.
The inner sum in Eq. �2� runs over the nearest neighbors of
site i, and therefore the interaction corresponds to a discrete
version of a squared gradient. Under such conditions, and if
the relaxational coefficient is a constant, Eq. �1� is the dis-
crete version of the so-called continuous Gaussian model. It
is trivial to see that in that case the model does not show any
order-disorder phase transition or other interesting behavior.
It simply relaxes toward the homogeneous disordered state
���=0. However, when the relaxational coefficient depends
on the value of the field, Eq. �1� presents a rich phenomenol-
ogy that ranges from inverted phase diagrams to noise-
induced multistability depending on the specific form of
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���� �9�. In particular, we have shown that the sign of the
curvature of ���� around the origin determines the
asymptotic stationary phase.

On the basis of a mean field approximation equivalent to
a global coupling description, we found the phase diagram
shown in Fig. 1 for the spatially and noise averaged field ���.
We assumed a harmonic local potential and the particular
choice ����= �1+�2� / �1+�4� as a generic example of a re-
laxational coefficient with a local minimum at the origin.
Note the ordering role of the fluctuations as well as the
noise-induced multistability when K is sufficiently large.
That is, there is no ordered phase if the individual oscillators
are decoupled from one another and/or if there is no noise.

Consider now the diffusive problem with an additional
degree of freedom zi,

�̇i = − ���i�
�F�����

��i
+ ����i��1/2�i�t� − �zi,

żi = ��i, �3�

where � is a frequency. The system �3� can be expressed as
a single equation including an inertial term, z̈i, as

z̈i + �2zi = �G����� , �4�

where

G����� = − ���i�
�F�����

��i
+ ����i��1/2�i�t� . �5�

In Eq. �4� it is understood that every �i on the right hand side
is to be replaced by żi /�; it is thus a closed second-order
stochastic differential equation for the set �zi�.

The mean field description of the system reads

�̇ = G��;���� − �z, ż = �� , �6�

where

G��;���� = − ����
�F��;����

��
+ ������1/2��t� �7�

and

�F��;����
��

= �� − K����t�� − ��� . �8�

Note that �G�� ; �����=0 is the stationary state condition for
the relaxational dynamics given by the globally coupled
single-field problem. Moreover, if �=0 then the system will
reach a steady state since Eq. �3� becomes equivalent to Eq.
�1�. Without the contribution G, the set �6� describes a simple
harmonic oscillator with frequency �.

We have been unable to solve these mean field equations
analytically in spite of their apparent simplicity. The problem
in applying existing methods for extended systems �12� lies
in the difficulty in the evaluation of averaging integrals that
have only been implemented for particular nonlinearities.
Any attempt to approximate our relaxation function to
achieve a tractable form misses the essential features of our
problem and leads to a totally different behavior than that
observed in the full problem. We can thus only describe the
behavior on the basis of our numerical simulations.

We implement periodic boundary conditions in two-
dimensional 128�128 lattices, choosing parameter values
which correspond to a point of multistability in Fig. 2. We
focus on the case �2=3 and �2=0.1. Figure 3 shows ���t��
vs ��̇�t�� /� for two different sets of initial conditions indi-
cated by arrows. For one set of initial conditions the system
is driven toward the homogeneous state ���t��= ��̇�t��=0,
while the other leads to an oscillatory regime. In the same
figure we show the entire distribution of ��i�t� , �̇i�t� /�� at
four different times during a period of oscillation once a
stationary oscillatory regime is reached. It is interesting to
note that, although some points fall within the attractor of the
stable fixed point, they are, nevertheless, driven to the oscil-
latory orbit because they are driven by the average value and
not by their individual dynamics.

In Fig. 4 we show spatial density plots for the values of
�i�t� and �̇i�t� /� at the centers of the clouds in Fig. 3. The
oscillations of the field are represented by variations in time
of the gray scale. Note the phase difference between the two
fields. In Fig. 5 we show the time Fourier transform of the
field average ���t�� for the data shown in Fig. 3 for the case
of the initial conditions leading to oscillatory behavior. The

FIG. 2. Order parameter m= ����� obtained from numerical
simulations of Eq. �1� for K=10 as a function of the intensity of the
fluctuations. The insets show a density plot of the field for two
different sets of initial conditions and �23, where the system
presents multistabilty. From �9�.

FIG. 1. Phase diagram of Eq. �1� in the parameter space of
intensity of the coupling, K, and intensity of the fluctuations, �2.
The capital letters D, O, and M indicate the disordered stable phase
����=0�, the ordered stable phase �����0�, and the multistable
phase ����=0 and ����0 both stable�, respectively. The open circle
indicates a triple point where all the phases merge. From �9�.
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system presents essentially the single frequency � in its dy-
namics.

We can summarize our broader observations based on nu-
merical results as follows. Provided the noise intensity is not
too much greater than the critical value for the single-field

problem, the mean values of the fields are well described by
the simple forms

���t�� = ���t��0 cos��t�, �z� = ���t��0 sin��t� , �9�

where ���t��0 is the mean value of the single-field problem.
For simplicity, the initial phase has been set arbitrarily to
zero. We thus find that the oscillations occur according to the
harmonic nature of the problem in the absence of G in Eq.
�6�, with an amplitude determined by the relaxational dy-
namics in the absence of the oscillatory behavior. Thus, note
again that in the absence of fluctuations no oscillatory behav-
ior is obtained. Moreover, even if noise is present, the occur-
rence of collective oscillations depends on a sufficiently
strong coupling. This then means that the trajectory in the
space ����t�� , ��̇�t�� /�� is a circle of radius ���t��0. We also
find that as the noise intensity increases, the trajectories re-
main periodic but that the circular shape becomes distorted
so that there is an additional modulation of the amplitude.

A generalization of the relaxational model involves cou-
pling terms that lead to morphological instabilities �8,10�.
Instead of global order-disorder transitions, the model now
leads to pattern formation. A prototypical example of this
type of interaction is the so-called Swift-Hohenberg cou-
pling, which in its continuous version reads LSH=−K�k0

2

+�2�2. The discretization of this operator is discussed in de-
tail in �8,10�, as is the mean field description that must now
allow for possible spatial modulation of the solution. The
structure of the mean amplitude problem turns out to be for-
mally identical to that obtained for the mean field problem
with diffusive coupling, as is the analytic characterization of
the self-consistent solutions. The information provided by
the solutions is of course different: in the case of diffusive
coupling the ordered phases are global, whereas here they are
patterned. The detailed structure of these patterns is dis-
cussed in �10�.

FIG. 3. �Color online� Simulation results: ���t�� vs ��̇�t�� /�.
Depending on the initial conditions, the system ends in a homoge-
neous state or in a limit cycle. The central black dot indicates the
stable fixed point. The wide solid black line is the stable limit cycle,
and the thin black line the unstable limit cycle, obtained from Eq.
�9�. The numerical simulations for two sets of initial conditions
indicated by arrows are plotted as a sequence of dots �blue and red,
respectively, in color, gray in print�. The clouds of points indicate
the values of �i�t� and �̇i�t� /� at four times that cover a period of
oscillation once the oscillatory stationary regime is reached. The
average values ���t�� and ��̇�t�� /� of these clouds are given by the
circles �blue in color, gray in print� with a superimposed black
cross.

FIG. 4. Spatial density plots of �i and �̇i /� at various times
through a cycle for the clouds shown in Fig. 3. The gray scale is the
same for all plots: black �−2� to white �+2�. Note the oscillatory
behavior and the phase difference between the two fields.

FIG. 5. Fourier transform of ���t�� for the numerical simulations
of Fig. 3 in the case of oscillatory asymptotic behavior.
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With a second degree of freedom, our extended system in
one dimension �to which we restrict our numerical simula-
tions� reads

�̇i = − ����
�1 + K
1 + 4 sinh2
1

2

�

�x
����i�

+ ������1/2�i�t� − �zi,

żi = ��i. �10�

The local potential is again harmonic. The particular form of
the coupling operator arises from the discretization of the
Swift-Hohenberg operator �8,10� and the choice k0=1. We
have carried out numerical simulations of Eq. �10� in a chain
of N=128 oscillators with periodic boundary conditions,
with coupling coefficient K=10 and noise intensity �2=3,
which leads to an aspect ratio 	�20 �10�. That is, at any
given time, we expect approximately 20 wavelengths of the

pattern. Figure 6 shows ��x , t� by means of a density plot.
We find an oscillatory pattern with temporal and spatial
modulations � and k*, respectively �k* is related to and close
to k0; here k*�1.05, see �10��. For noise intensities near the
critical value the fields are simply given by

���x,t�� = 2A�k*�cos�k*x�cos��t� ,

�z�x,t�� = 2A�k*�cos�k*x�sin��t� . �11�

Again for simplicity, we have set the spatial phase at the
origin and the initial temporal phase to zero.

The phase diagram indicates that for the values of the
parameters used in our simulation the system lies within a
multistable region. We have explicitly shown this multista-
bility in the single-field problem �10� and would expect that
an oscillatory pattern develops or not depending on the initial
condition. While certain regions in Fig. 6 appear less ordered
than others and this might provide an indication of multista-
bility, we did not pursue this possibility in detail, our purpose
here being mainly to present the nature of the noise-induced
spatio-temporal pattern.

Herein we have shown that in the presence of inertia in
relaxational systems with field-dependent kinetic coeffi-
cients, noise may induce spatio-temporal oscillatory behavior
in spatially extended systems. These systems are particularly
interesting �and different from those in which transitions are
induced dynamically �11�� because the transitions do not de-
pend on the Stratonovich drift and thus occur regardless of
the interpretation of the noise. We have supported our con-
clusions via numerical simulations. The challenge that re-
mains is an analytic solution of the problem, even in the
mean field case.
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